

Fachcurriculum Chemie für die Einführungsphase (Jahrgang 11) am TGG-Leer Einführung in die organische Chemie Stand: 08/2022

Sachkompetenz	Erkenntnisgewinnungskompetenz	Kommunikationskompetenz	Bewertungskompetenz
Die Lernenden	Die Lernenden	Die Lernenden	Die Lernenden
 beschreiben, dass Moleküle ausgewählter organischer Verbindungen Kohlenstoff- und Wasserstoffatome enthalten. (S2) unterscheiden anorganische und organische Stoffe. (S1) 	 führen qualitative Experimente zum Nachweis von Kohlenstoff- und Wasser- stoffatomen durch. (E5) 	 unterscheiden Stoff- und Teilchenebene. (K9) 	 erkennen die Relevanz von organischen Verbindungen in ihrer Lebenswelt.
 beschreiben die Molekülstruktur von Alkanen. (S1) beschreiben die homologe Reihe der Alkane. (S1) entwickeln Strukturisomere von Alkanmolekülen. (S13) 	 leiten aus einer Summen-/Molekülformel Strukturisomere ab. (E7) 	der IUPAC-Nomenklatur. (K9)	reflektieren den Nutzen der IUPAC-No- menklatur. (B7) (hier ist gemeint, dass man erkennt, dass es notwendig ist eine einheitliche fachsprachliche Darstellung zu verwenden)
 stellen organische Moleküle in der Lewis- Schreibweise dar. (S13) verwenden das EPA-Modell zur Erklärung der räumlichen Struktur organischer Moleküle. (S13) 	 veranschaulichen die Struktur organischer Moleküle mit Modellen.(E7) verwenden verschiedene Schreibweisen organischer Moleküle (Summen-/Molekülformel, Lewis-Schreibweise, Skelettformel, Halbstrukturformel).(E7) diskutieren die Möglichkeiten und Grenzen von Anschauungsmodellen. (E9) 	 nutzen räumliche Strukturdarstellungen und überführen diese in die Lewis- Schreibweise. (K7) 	
 beschreiben die Stoffmenge als Teilchenanzahl in einer Stoffportion. (S6) beschreiben den Stoffumsatz bei chemischen Reaktionen. (S16) führen stöchiometrische Berechnungen auf der Basis von Reaktionsgleichungen durch. (S17) berechnen exemplarisch die Kohlenstoffdioxidmasse bei Verbrennungsreaktionen. (S17) 	 entwickeln aus Alltagssituationen chemi- sche Fragestellungen zum Kohlenstoff- dioxidausstoß. (E1, E2) 	 recherchieren zum Kohlenstoffdioxid- ausstoß von verschiedenen Kraftfahr- zeugen. (K1) 	beurteilen den Kohlenstoffdioxidausstoß von verschiedenen Kraftfahrzeugen. (B8)

 beschreiben die Verbrennung organischer Stoffe auf Stoff- und Teilchenebene als chemische Re- aktion.(S6) 	 führen Experimente zu Verbrennungsreaktionen durch.(E5) planen Experimente zum Nachweis von Kohlenstoffdioxid und Wasser und führen diese durch. (E4) 	und Teilchenebene. (K9)	 beurteilen die Bedeutung von Verbrennungsreaktionen für das globale Klima: Treibhauseffekt. (B5, B10, B13) vergleichen fossile und nachwachsende Rohstoffe im Sinne der Nachhaltigkeit. (B6)
 beschreiben, dass sich Stoffe in ihrem Energiegehalt unterscheiden. (S3) beschreiben, dass bei Verbrennungsreaktionen neue Stoffe mit einem niedrigeren Energiegehalt entstehen. (S3) stellen den Energiegehalt von Edukten und Produkten in einem qualitativen Energiediagramm dar. (S3) 		 differenzieren Alltags- und Fachsprache. (K6) 	reflektieren den Begriff der Energieentwertung bei Verbrennungsreaktionen. (B8)
 stellen die Reaktionsgleichungen zur Oxidation von Alkanolen mit Kupferoxid auf. (S16) stellen Redoxreaktionen mit Molekülverbindungen mithilfe von Oxidationszahlen dar. (S16) unterscheiden zwischen primären, sekundären und tertiären Kohlenstoffatomen. (S1) beschreiben die Oxidierbarkeit primärer, sekundärer und tertiärer Alkanole. (S1, S2) 	führen Experimente zur Oxidation von Alkanolen durch. (E5)		 beurteilen grundlegende Aspekte zu Gefahren und Sicherheit in Labor und Alltag (B11). reflektieren, dass Methanol und Ethanol als Zellgifte wirken. (B5, B8) wenden ihre Kenntnisse über die Oxidation von Ethanol auf physiologische Prozesse an: Alkoholabbau im Körper, Herstellung von Essigsäure. (B8)
 beschreiben die Molekülstruktur von Alkanolen, Alkanalen, Alkanonen und Alkansäuren. (S1) benennen die funktionellen Gruppen: Hydroxy-, Carbonyl- (Aldehyd-, Keto-), Carboxy-Gruppe. (S1) 	 planen Experimente zur Herstellung ausgewählter Oxidationsprodukte der Alkanole. (E4) 	 wenden die IUPAC Nomenklatur zur Be- nennung organischer Moleküle an. (K9) 	 beurteilen die Gefahren ausgewählter Oxidationsprodukte der Alkanole und lei- ten daraus begründet Handlungsoptio- nen ab. (B11)
 beschreiben die Elektronegativität als Maß für die Fähigkeit eines Atoms, Bindungselektronen anzuziehen. (S11) differenzieren zwischen polaren und unpolaren Atombindungen/ Elektronenpaarbindungen in Molekülen. (S6, S13, S11) unterscheiden Dipolmoleküle und unpolare Moleküle. (S9) 	 wenden die Kenntnisse über die Elektro- negativität zur Erklärung der Polarität von Bindungen an. (E7) 	 stellen Polaritäten in Bindungen mit ge- eigneten Symbolen dar. (K9) 	

 grenzen Atombindungen/Elektronenpaarbindungen von Ionenbindungen ab. (S1) beschreiben den Aufbau von Ionenverbindungen in Ionengittern. (S11) erklären Stoffeigenschaften mit Hilfe von interund intramolekularen Wechselwirkungen: London-Kräfte, Dipol-Dipol-Wechselwirkungen, Ion-Dipol-Wechselwirkungen, Wasserstoffbrücken. (S13) unterscheiden zwischen Hydrophilie und Lipophilie. (S1, S10) 	durch. (E5)	stellen die Zusammenhänge zwischen Stoffeigenschaft und Molekülstruktur fachsprachlich dar. (K6, K9)	erklären mit Hilfe von inter- und intramo- lekularen Wechselwirkungen (ein- schließlich Ionen-Dipol-Wechselwirkun- gen) Phänomenen in ihrer Lebenswelt. (B7)
 beschreiben die stoffliche Zusammensetzung von Erdöl, Erdgas und Biogas. erklären das Verfahren der fraktionierten Destillation auf Basis ihrer Kenntnisse zu Stofftrennverfahren. (S10) 	verwenden Modelle zur Darstellung der fraktionierten Destillation. (E7)	 nutzen schematische Darstellungen zur Erklärung technischer Prozesse. (K7) 	 bewerten Verfahren zur Nutzung und Verarbeitung von Erdöl, Erdgas und Bio- gas vor dem Hintergrund knapper wer- dender Ressourcen. (B9, B10) erkennen Tätigkeitsfelder im Umfeld der Petrochemie. (B8)
 beschreiben das thermische Cracken als Verfahren zur Herstellung von kurzkettigen und ungesättigten Kohlenwasserstoffen. (S unterscheiden Einfach- und Mehrfachbindungen. (S1) beschreiben die Molekülstruktur von Alkenen. (S1) beschreiben die Gesetzmäßigkeit homologer Reihen. (S1) benennen die Doppelbindung als funktionelle Gruppe der Alkene. (S1) 	chung des thermischen Crackens. (E7)	beschreiben das thermische Cracken auf Teilchenebene. (K9)	beurteilen die Bedeutung des Crackens aus ökonomischer Sicht. (B12)
 erklären das Funktionsprinzip der Gaschromato- grafie anhand von intermolekularen Wechselwir- kungen. (S13) 	 nutzen Gaschromatogramme zur Identi- fizierung von Stoffen in Stoffgemischen. (E6) 	 wenden Fachsprache zur Beschrei- bung des Prinzips der Chromatografie an. (K9) 	erkennen die Bedeutung analytischer Verfahren in der Berufswelt. (B8)